On the usage of the \texttt{geepack}

Søren Højsgaard and Ulrich Halekoh

\texttt{geepack} version 1.3-1 as of 2019-12-12

Contents

1 Introduction 1
2 Citing \texttt{geepack} 1
3 Simulating a dataset 2
4 Using the \texttt{waves} argument 3
5 Using a fixed correlation matrix and the \texttt{zcor} argument 5
6 When do GEE’s work best? 6

1 Introduction

This note contains a few extra examples. We illustrate the usage of a the \texttt{waves} argument and the \texttt{zcor} argument together with a fixed working correlation matrix for the \texttt{geeglm()} function.

2 Citing \texttt{geepack}

The primary reference for the \texttt{geepack} package is

\url{https://www.jstatsoft.org/article/view/v015i02}
3 Simulating a dataset

To illustrate the usage of the waves argument and the zcor argument together with a fixed working correlation matrix for the geeglm() we simulate some data suitable for a regression model.

```r
> library(geepack)
> timeorder <- rep(1:5, 6)
> tvar <- timeorder + rnorm(length(timeorder))
> idvar <- rep(1:6, each=5)
> uuu <- rep(rnorm(6), each=5)
> yvar <- 1 + 2*tvar + uuu + rnorm(length(tvar))
> simdat <- data.frame(idvar, timeorder, tvar, yvar)
> head(simdat,12)

   idvar timeorder tvar   yvar
 1      1       1 1.0 2.038988
 2      1       2 3.1 7.084939
 3      1       3 3.4 7.227487
 4      1       4 3.4 6.626946
 5      1       5 3.2 4.659393
 6      2       1 0.0 0.668086
 7      2       2 0.6 3.903763
 8      2       3 1.7 6.228827
 9      2       4 2.9 10.663722
10     3       1 0.9 3.518166
11     3       2 2.6 7.912803
12     3       3 2.7 7.912803
```

Notice that clusters of data appear together in simdat and that observations are ordered (according to timeorder) within clusters.

We can fit a model with an AR(1) error structure as

```r
> simdat$zcor <- corAR1(formula(timeorder ~ idvar), id=idvar)
> library(lme4)
> geeglm(yvar ~ tvar + idvar, id=idvar, data=simdat, family=gaussian, correlation=zcor)
```

If you use geepack in your own work, please do cite the above reference.
This works because observations are ordered according to time within each subject in the dataset.

4 Using the `waves` argument

If observations were not ordered according to cluster and time within cluster we would get the wrong result:

```r
> set.seed(123)
> ## library(doBy)
> simdatPerm <- simdat[sample(nrow(simdat),),]
> ## simdatPerm <- orderBy(~idvar, simdatPerm)
> simdatPerm <- simdatPerm[order(simdatPerm$idvar),]
> head(simdatPerm)
      idvar timeorder tvar  yvar
     3        1     3 3.395024 7.227487
     5        1     5 3.249634 4.659393
     4        1     4 3.424579 6.626946
     1        1     1 4.922836 10.663722
     2        1     2 3.107098 7.084939
     10       2     5 4.922836 10.663722
```

Notice that in `simdatPerm` data is ordered according to subject but the time ordering within subject is random.

Fitting the model as before gives
mod2 <- geeglm(yvar~tvar, id=idvar, data=simdatPerm, corstr="ar1")
mod2

Call:
geeglm(formula = yvar ~ tvar, data = simdatPerm, id = idvar,
 corstr = "ar1")

Coefficients:
(Intercept) tvar
1.507896 1.988578

Degrees of Freedom: 30 Total (i.e. Null); 28 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 2.145164

Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
 alpha
0.5500409

Number of clusters: 6 Maximum cluster size: 5

Likewise if clusters do not appear contiguously in data we also get the wrong result (the clusters are not recognized):

simdatPerm2 <- orderBy(~timeorder, data=simdat)
simdatPerm2 <- simdat[order(simdat$timeorder),]
geeglm(yvar~tvar, id=idvar, data=simdatPerm2, corstr="ar1")

Call:
geeglm(formula = yvar ~ tvar, data = simdatPerm2, id = idvar,
 corstr = "ar1")

Coefficients:
(Intercept) tvar
1.248357 2.071333

Degrees of Freedom: 30 Total (i.e. Null); 28 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 2.125603

Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
 alpha
0

Number of clusters: 30 Maximum cluster size: 1

To obtain the right result we must give the waves argument:
5 Using a fixed correlation matrix and the zcor argument

Suppose we want to use a fixed working correlation matrix:

```r
> cor.fixed <- matrix(c(1, 0.5, 0.25, 0.125, 0.125,
>                       0.5, 1, 0.25, 0.125, 0.125,
>                       0.25, 0.25, 1, 0.5, 0.125,
>                       0.125, 0.125, 0.5, 1, 0.125,
>                       0.125, 0.125, 0.125, 0.125, 1), 5, 5)
```

Such a working correlation matrix has to be passed to `geeglm()` as a vector in the zcor argument. This vector can be created using the `fixed2Zcor()` function:

```r
> zcor <- fixed2Zcor(cor.fixed, id=simdatPerm$idvar, waves=simdatPerm$timeorder)
```

Notice that `zcor` contains correlations between measurements within the same cluster. Hence if a cluster contains only one observation, then there will be generated no entry in `zcor` for that cluster. Now we can fit the model with:
> mod4 <- geeglm(yvar ~ tvar, id = idvar, data = simdatPerm, corstr = "fixed", zcor = zcor)
> mod4

Call:
geeglm(formula = yvar ~ tvar, data = simdatPerm, id = idvar,
 zcor = zcor, corstr = "fixed")

Coefficients:
(Intercept) tvar
1.097249 2.093038

Degrees of Freedom: 30 Total (i.e. Null); 28 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 2.133702

Correlation: Structure = fixed Link = identity
Estimated Correlation Parameters:
 alpha:1
 1

Number of clusters: 6 Maximum cluster size: 5

6 When do GEE’s work best?

GEEs work best when you have relatively many relatively small clusters in your data.